A battery stores electricity for future use. It develops voltage from the chemical reaction produced when two unlike materials, such as the positive and negative plates, are immersed in the electrolyte, a solution of sulfuric acid and water. In a typical lead battery, the voltage is approximately two volts per cell, for a total of 12 volts. Electricity flows from the battery as soon as there is a circuit between the positive and negative terminals. This happens when any load that needs electricity, such as the radio, is connected to the battery.
Lead batteries operate in a constant process of charge and discharge When a battery is connected to a load that needs electricity, such as a starter in a car, current flows from the battery and the battery then begins to discharge. As a battery begins to discharge, the lead plates become more alike, the acid becomes weaker and the voltage drops.
A full charge restores the chemical difference between the plates and leaves the battery ready to deliver its full power. In a vehicle, charging happens when you are driving and the alternator generates current to put back into the battery.
The unique process of discharge and charge in lead batteries means that energy can be discharged and restored repeatedly. This is what is known as the cycling ability in a battery. If the battery won't start your car, you usually refer to it as dead even though that is not technically correct. A battery that is discharged, from leaving your headlights on or from a damaged alternator, can be recharged at full capacity. Whereas, a battery at the end of its service life can’t be recharged enough to restore to a useful power level, then it is truly dead and must be replaced.